ME235A Finite Element Analysis
Fall, 2001

Solution to Problem Set \#2

Oct. 172001
Exercise 1 on page 36 (The problem is not restated.)

a. The shape functions are:

$$
\begin{align*}
& N_{1}=\left\{\begin{array}{cc}
\left(x_{2}-x\right) / h & x_{1} \leq x \leq x_{2} \\
0 & \text { elsewhere }
\end{array}\right. \\
& N_{A}=\left\{\begin{array}{cc}
\left(x-x_{A-1}\right) / h & x_{A-1} \leq x \leq x_{A} \\
\left(x_{A+1}-x\right) / h & x_{A} \leq x \leq x_{A+1} \\
0 & \text { elsewhere }
\end{array}\right. \\
& N_{5}=\left\{\begin{array}{cc}
\left(x-x_{4}\right) / h & x_{4} \leq x \leq x_{5} \\
0 & \text { elsewhere }
\end{array}\right.
\end{align*}
$$

The stiffness matrix \mathbf{K} is a $4 \mu 4$ symmetric matrix, whose elements are given as:

$$
K_{A B}=a\left(N_{A}, N_{B}\right)=\int_{0}^{1} N_{A, x} N_{B, x} d x
$$

So that

$$
\begin{aligned}
& K_{11}=\int_{x_{1}}^{x_{2}}(-1 / h)^{2} d x=1 / h=4 \\
& K_{12}=\int_{x_{1}}^{x_{2}}(-1 / h)(1 / h) d x=-4 \\
& K_{22}=\int_{x_{1}}^{x_{2}}(1 / h)^{2} d x+\int_{x_{2}}^{x_{3}}(-1 / h)^{2} d x=2 / h=8
\end{aligned}
$$

etc.
The stiffness matrix is

ME235A Finite Element Analysis
Fall, 2001

$$
\mathbf{K}=\left[\begin{array}{cccc}
4 & -4 & 0 & 0 \\
-4 & 8 & -4 & 0 \\
0 & -4 & 8 & -4 \\
0 & 0 & -4 & 8
\end{array}\right]
$$

The force vector \mathbf{F} is $4 \mu 1$ with elements given as:

$$
F_{A}=\left(N_{A}, f\right)+N_{A}(0) h-a\left(N_{A}, N_{5}\right) g=q\left(N_{A}, x\right)
$$

So that,

$$
\begin{aligned}
& F_{1}=q / h \int_{x_{1}}^{x_{2}}\left(x_{2}-x\right) x d x=q / 96 \\
& F_{2}=q / h\left(\int_{x_{1}}^{x_{2}}\left(x-x_{1}\right) x d x+\int_{x_{2}}^{x_{3}}\left(x_{3}-x\right) x d x\right)=q / 16 \\
& F_{3}=q / h\left(\int_{x_{2}}^{x_{3}}\left(x-x_{2}\right) x d x+\int_{x_{3}}^{x_{4}}\left(x_{4}-x\right) x d x\right)=q / 8 \\
& F_{4}=q / h\left(\int_{x_{3}}^{x_{4}}\left(x-x_{3}\right) x d x+\int_{x_{4}}^{x_{5}}\left(x_{5}-x\right) x d x\right)=3 q / 16
\end{aligned}
$$

The force vector is

$$
\mathbf{F}=q\left\{\begin{array}{c}
1 / 96 \\
1 / 16 \\
1 / 8 \\
3 / 16
\end{array}\right\}
$$

Now, solving the matrix equation $\mathbf{K d}=\mathbf{F}$ for \mathbf{d}, we have

$$
\mathbf{d}=q\left\{\begin{array}{c}
1 / 6 \\
21 / 128 \\
7 / 48 \\
37 / 384
\end{array}\right\}=q\left\{\begin{array}{l}
0.1667 \\
0.1641 \\
0.1458 \\
0.0964
\end{array}\right\}
$$

The exact solution is

$$
u(x)=q\left(1-x^{3}\right) / 6
$$

Check that $u\left(x_{A}\right)=d_{A}$.
b. The derivative of u^{h} in each element $] x_{A}, x_{A+1}[$ is constant and given by:

ME235A Finite Element Analysis
Fall, 2001

$$
\begin{aligned}
& \left.u_{, x}^{h}(x)=\frac{u^{h}\left(x_{A+1}\right)-u^{h}\left(x_{A}\right)}{h}=\frac{u\left(x_{A+1}\right)-u\left(x_{A}\right)}{h}, \quad x \in\right] x_{A}, x_{A+1}[\\
& u_{, x}(x)=-\frac{q x^{2}}{2}
\end{aligned}
$$

element 1: re ${ }_{, x}=\frac{\left|u_{, x}^{h}(1 / 8)-u_{, x}(1 / 8)\right|}{q / 2}=\frac{1}{192}$
same for elements 2, 3 and 4
c. For $h=1(n=1)$,

$$
\begin{aligned}
& u_{, x}^{h}(x)=-\frac{q}{6} \\
& r e_{, x}=\frac{\left|u_{, x}^{h}-u_{, x}(1 / 2)\right|}{q / 2}=\frac{1}{12}
\end{aligned}
$$

For $h=1 / 2(n=2)$ (consider element 1 only),

$$
\begin{aligned}
& u_{, x}^{h}=-\frac{q}{24} \\
& r e_{, x}=\frac{\left|u_{, x}^{h}-u_{, x}(1 / 4)\right|}{q / 2}=\frac{1}{48}
\end{aligned}
$$

d. $\quad r e_{, x}=c h^{k}$
$\ln r e_{, x}=k \ln h+\ln c$
(i) The slope of the curve is k , and is the order of convergence (accuracy). This indicates the rate of convergence of the derivative as the mesh is refined.
(ii) The y intercept is $\log \mathrm{c}$, and indicates the relative error when $\mathrm{h}=1$, i.e., when the entire bar is treated as one element. This is the largest error in the derivative.

